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SUMMARY

In a recently published work by Abarbanel and Gottlieb (NASA CR-159386),
a new class of explicit time-split algorithms designed for application to the
Navier-Stokes equations for compressible flow was developed. These algorithms,
which utilize locally-one-dimensional (LOD) spatial steps, were shown to possess
stability characteristics superior to those of other time-split schemes. 1In
the present work, the properties of an implicit LOD method, analogous to the
Abarbanel-Gottlieb algorithm, are examined using the two-dimensional heat con-
duction equation as the test problem. Both temporal and spatial inconsistencies
inherent in the scheme are identified. The principal result of the present work
is the development of a new consistent, implicit splitting approach. The
relationship between this new method and other time-split implicit schemes is
explained, and stability problems encountered with the method in three dimen-
sions are discussed.

INTRODUCTION

Many of the methods currently in use for numerically solving the Navier-
Stokes equations for compressible flow are based on the concept of time-split
and fractional-step finite-difference schemes developed at length in reference 1.
These schemes include the Douglas-Gunn type alternating-direction implicit (ADI)
methods of Briley and McDonald (ref. 2) and Beam and Warming (ref. 3) and the
time-split explicit approaches such as that of MacCormack and Baldwin (ref. 4).
The primary impetus in the development of time-split schemes is to reduce the
amount of computational work to advance the solution one time step. 1In an
implicit method, direct inversion of the full matrix required to gain the solu-
tion of the algebraic system associated with the difference equations requires a
prohibitive amount of computational effort. By (approximately) splitting the
matrix, this computational effort can be substantially reduced. 1In explicit
methods, the splitting of the equations so that the various operators are
advanced separately allows one, in principle, to advance each of these steps
at its own stability 1limit. Since the stability limit for some of the steps
can be substantially larger than for others in a typical high Reynolds number
flow, a savings in computational effort can be realized. Currently, available
splitting schemes suffer from various shortcomings. The spatially split
Douglas-Gunn type methods (e.g., refs. 2 and 3) have stability problems in
three dimensions, while the time-split explicit method of reference 4 does not
achieve the sought-after independence of stability criteria for the various
split steps.

Recent work by Abarbanel and Gottlieb (ref. 5) has shed new light on the
stability restriction of the time-split scheme of MacCormack and Baldwin
(ref. 4) and opened up the possibility of a new class of implicit methods. In
the current paper, the consistency of time-split schemes as introduced by
Abarbanel and Gottlieb is examined, and a new consistent time-split finite-
difference algorithm is introduced.



In the time-split scheme of reference 4, the mixed-derivative term for
viscous flow in the Navier-Stokes equations is apportioned among the various
space—-split operators. Abarbanel and Gottlieb point out, through a stability
analysis of the full (linearized) Navier-Stokes equations, that this does not
constitute an optimal split in that the allowable time step for each split step
is influenced by the mesh spacing associated with other split steps. 1In ref-
erence 5, Abarbanel and Gottlieb propose a new method of splitting in which the
spatial operators of the Navier-Stokes equations are first split into hyperbolic
(i.e., Buler equations), parabolic, and mixed-derivative operators, and then
each of these operators is solved with a time-split explicit scheme. The method
is thus akin to the locally-one-dimensional (LOD) schemes, i.e., schemes in
which only one term in the spatial operator appears in each split step. This
scheme is proven to be an optimally split scheme. Further work by Abarbanel
and Gottlieb indicates that such an operator-split scheme, in which the LOD
explicit-difference method is replaced by an LOD backward Euler implicit method
(with the cross-derivative operator advanced explicitly), is unconditionally
stable and possesses a very good smoothing rate (a desirable feature for the
multigrid method). Such a method thus appears to offer an attractive alterna-
tive to the spatially split Douglas-Gunn schemes of references 2 and 3, which
are known to have stability problems in three dimensions (ref. 6).

As a summary of the status of current finite-difference methods for solu-
tion of the three-dimensional Navier-Stokes equations, the desirable properties
of an "ideal" scheme are listed:

1. Unconditional stability
2. Consistency
3. Temporal accuracy

4. Ability to recover steady-state solutions, when they exist, independently
of the iteration history

5. Ability to perform required matrix inversions at a minimum of computa-
tional time

The currently used Douglas-Gunn methods of references 2 and 3 meet criteria 2
through 5. On the other hand, the implicit version of the scheme developed by
Abarbanel and Gottlieb in reference 5 has been demonstrated to meet criterion 1,
but its properties in regard to criteria 2 through 4 are unknown.

The motivation of the current investigation was to understand better the
properties of the LOD-type algorithm as proposed in reference 5. The test prob-
lem studied was the solution of the heat conduction equation on the unit square
subject to steady Dirichlet data. Numerical solutions to this problem using both
explicit and implicit LOD schemes revealed two immediate difficulties: (1) a
temporal inconsistency in the steady-state solution due to the operator split-
ting and (2) errors in the solution due to the application of boundary data.

The first difficulty is well known and there are a variety of ways of allevi-
ating it. The second difficulty is not so well known and is somewhat more sub-
tle but has been studied to some extent in the Russian literature (ref. 1) and

2



is discussed briefly by Mitchell (ref. 7). The errors produced by the temporal VQ
inconsistency are of the order of the temporal truncation error and, hence, pro- N
vide negligible contamination of the solution with explicit schemes, since sta-
bility considerations dictate that this time step be bounded below the spatial
truncation error. However, stability requires no time-step bound for implicit
schemes, so that the temporal inconsistency can actually swamp the true solution

for large values of the time step. Computational verification of these errors

for both explicit and implicit LOD schemes is presented in this paper.

As discussed in references 1, 7, and 8, the boundary-condition errors in
the LOD methods arise from the fact that the intermediate solutions do not
represent consistent approximations to the dependent variables at any time
level. Hence, the intermediate boundary data may not properly be the given
boundary data for the problem and, in general, will be dependent on the form
of the split operator and the given boundary data. Consistently split schemes
do not suffer from this problem, since all intermediate solutions represent
approximations to the dependent variables at the new time level (ref. 8). The
method of undetermined functions (MUD) developed in reference 1 is shown to
alleviate the boundary difficulty for the LOD schemes for Dirichlet data. A
generalization of this procedure leads to the construction of a general consis-
tent LOD scheme which requires no boundary-error correction for steady data.
This new approach is presented in the current work.

In the remainder of this paper the inconsistencies associated with LOD
schemes are developed in detail and methods for their alleviation outlined.
The information thus developed is used to devise a general consistent LOD
scheme. Comments are then made on the relation of this scheme to other ADI
schemes.

SYMBOLS
Ag full-step tridiagonal-difference operator defined in equation (13),
L =1,2
KQ half-step tridiagonal-difference operator defined in equation (30),
£ =1,2
ﬁg partial-step tridiagonal-difference operator defined in equation (62),
2 =1,2
By, full-step explicit-difference operator defined in equation (14),
L =1,2
dg boundary-condition residual function for LOD forward Euler scheme

defined in equations (A3), 2 =1,...4
D discrete computational domain (fig. 1)

Dg continuum domain (fig. 1)



Dy ,Djp union of all horizontal and vertical grid lines in D, respectively
(fig. 1)

51,52- union of all horizontal and vertical grid lines in D U T, respec-
tively (fig. 1)

eq, boundary-condition residual function for LOD Lax-Wendroff scheme
defined in equations (A7), £ =1,...4

E error in solution defined as difference between analytical and
numerical solution

fg boundary-condition function, £ =1,...4
Fy constants in exact solution to test problem, £ =1,2
gy boundary-condition residual function for LOD backward Euler scheme

defined in equations (33) to (36), £ =1,...4

g9 boundary-condition residual function for LOD predictor-corrector
scheme, % =1,...4

ag boundary-condition residual function for LODQ scheme defined in
equations (69), % =1,...4

G Von Neumann damping ratio

h spatial step size (subscripts indicate spatial direction)
Hy horizontal grid 1line in D, j =1,2,...J

i = Va1

I total number of spatial grid points in xy-direction

J total number of spatial grid points in xj-direction

k integer exponent

Ly ,Ly,L3 general time-split spatial-difference operators
Mj,M5,M3 general LOD split-difference operators

n time-increment counter

q correction function for LOD scheme determined by method of
undetermined functions

Q correction function for LODQ scheme

R steady-state residual defined in equation (17)



T

steady-state residual of whole step form of time-split schemes

R error function of steady-state residual of time-split schemes

t time

u dependent variable

Vi vertical grid line in D, 1 =1,2,...1

X7rXp,%3 Cartesian coordinate directions

o parameter that sets temporal order of accuracy

By, = 2 At h™2(1 - cos 6g), & =1,2

Yq element of discrete boundary I, 2 =1,...4

Yeh element of continuum boundary T, 2 =1,...4

T discrete boundary (fig. 1)

Fc continuum boundary (fig. 1)

Su/St general time-difference approximation

Gu/dxl spatial-difference approximation, £ =1,2,3

At time step

ng = At b~ sin By, & =1,2

By phase angle of Fourier error analysis, £ =1,2

Ag second-order central second-difference operator defined in equa-
tions (6) and (7), 2 =1,2

T normalized time step defined in equation (20)

wy, element of the set £, 2 =1,...4

Q set of grid lines one mesh increment interior to discrete boundary
' (fig. 1)

Superscripts:

n time-step counter

m time~-step counter.



(m)

time-split-step counter

intermediate time-level indicator

Subscripts:

max
min

1,2

xy-mesh increment counter
X9-mesh increment counter
maximum
minimum

Cartesian coordinate direction indicator

Abbreviations:

ADI

DG

LOD
LODBE
LODBEC
LODFE
LODPC
LODQ
MUD

MUDB

alternating direction implicit

Douglas~Gunn

locally-one-dimensional

LOD backward Euler

consistent LOD backward Euler

LOD forward Euler

LOD predictor-corrector

LOD with correction function Q (egs. (60) to (66))
method of undetermined functions

MUD with boundary data adjusted

MUD with correction function applied over entire domain
two-dimensional

three-dimensional

DEVELOPMENT AND APPLICATION OF SIMPLE LOD SCHEMES

MODEL PROBLEM FORMULATION

D

The model problem chosen for study in this paper is the heat conduction
equation in two dimensions on the unit square. That is,



du 92y 92y
— = — + — Mm

dt Bx]Z ax§

will be solved on the domain Dg, which is the open set
Do = {(x1,x2) : 0 < xy,%9 < 1)

The boundary of the continuum domain I, is the union of the four unit-length
line segments Ygf, as illustrated in figure 1. The discrete domain D on
which the computations are carried out is obtained by overlaying D, with a
uniform net, with D defined by

D = {I?x1)ij’(x2)ii] : (X71)49 = (1 - 1)y, (x2)j5 = (3 - V)h3
for 25 if1-1,2%3=2J- {}

where I and J are the number of mesh points in the xj- and xj-directions,
respectively, and the mesh spacings are given by

-—
—

In all numerical solutions performed in this paper we will take I = J. Conse-
quently, the spatial step sizes are equal (i.e., bhy = hjy), so that the unsub-
scripted symbol h is used to denote both spatial increments. The discrete
boundary of D, the set I, is the union of the four discrete line segment

sets Yg, which have obvious definitions. The discrete region is depicted in
figure 1. To augment the results which follow, the discrete set  is defined
as the union of the four line segments Wy 1ying one mesh width from I within
D (fig. 1).

As a final point, additional notation is introduced to simplify the
description of the manner in which the algorithms described in this paper are
performed computationally. Let

1-1,3-”}

{E’H Yijr (x2) 13)
{[(x-l )ij' {x2) ij] J - 1}

.
)
HA
P

T2}

1"t

Hy

.
[
1
=
-
N
A
(]
WA

v



These two sets are illustrated in figure 1. Note that Hg is the %th
horizontal line and Vg is the 2th vertical line in D U I'. Now, define

Dy £ Hy,

9

11l
£Ce

ZE

C

Dy

(=)
N
114
=
pCw
S

The sets Dy and D) are equivalent to D but merely viewed in another way -
as the union of all horizontal and vertical lines in D, respectively. The sets
D7 and D3 include the adjacent boundary lines.

During the course of this paper, the numerical solution to equation (1)

using various algorithms is discussed for two separate problems, designated test
problem T and test problem 2 (or TP1 and TP2). Both problems have Dirichlet-

type boundary data. Let
u(xy,x3,t) = £y (xy,%x3,t) (X1,%X2) € Yoo r £ =1,...4 (2)

The boundary data for the test problems are

£ (X1,%x2,%) Fy sin Txo W

Eo(x7,%9,t) = Fy sin Xy
(3)

f3(xy7,%2,t) F1 sin Txjp

Fq(xy,%0,t) Fo sin Txy J



where F; and Fg may take on the values 0 or 1. The steady-state analytic
solution to equation (1) on D, subject to the boundary data given by equa-

tions (3) is
i] sin Txy

u(x1,x2) = Fy sech (g) cosh [%(XZ -
+ Fq sech (g) cosh {%<x1 - )} sin Tx, (4)

For TP1, F; =0 and Fp =1; for TP2, Fy =1 and Fj = 0. The boundary con-
ditions and applicable steady-state analytic solutions for TP1 and TP2 are plot-
ted for illustrative purposes in figure 2.

|-

[3%1 Rl

The reason for the introduction of the two separate test problems arises
from the nature of the errors in time-split difference methods illustrated in
this report. As discussed herein, errors are introduced in time-split methods
as a result of inconsistencies associated with the boundary conditions. The
particular boundaries associated with these errors vary depending on the par-
ticular time-split scheme, hence the need for the two problems.

DIFFERENCE APPROXIMATIONS

All numerical schemes discussed in this paper use first-order, one-sided
(backward or forward) finite differences for the time derivatives and second-
order, central differences for spatial derivatives appearing in equation (1).

If u?j is the approximation to u(ihy,jhy,n At), then the difference forms
are

_ N — 5)
ot (

- n n-1
du\"P  ujj - ujj
At

ij

where 0 £ p 21 and At 1is the time step. The spatial derivatives are
approximated by

n n n
320\ Wi+, ~ 2ujj + ujq,j
= ~ (6a)
ox2 .. h2
1/ i5 1
- n
= Aquj; (6b)



n n n
32,7 Ui, 341~ 2ui§ + Ui, 54
= ~ > (7a)
3x2 i3 h2
= Azu?j (7b)

When no confusion can arise regarding a given spatial location, the notation
given in equations (5) to (7) is simplified by dropping the subscripts on u.
For example, the forward-time, centered-space approximation to equation (1)
may be written as

uh ~ yn-1
X = (Ay + Ay)un-? (8)

with the implied understanding that this approximation is to be applied at all
points in D.

TIME-SPLIT SCHEMES
General Idea

Time-split schemes are methods in which the computations associated with
advancing a numerical approximation a time distance At are divided into a
sequence of two or more substeps. This division is done to obtain an algorithm
with less computational work than the whole-step scheme. Time-split methods
may be implicit, explicit, or a combination - some implicit steps, some explicit
steps. Combination-type schemes are often referred to as predictor-corrector
or hybrid methods.

As an illustration of the splitting concept, consider a general two-step
scheme for equation (1) which advances time from level n to n + 1. Such a
scheme may be written in operational form as

Su
(St]
Su
(Stz

In (A1u,/\2u) (9a)

Ly (MAu,Aqu) (9b)

10



Su du
where S— represents some approximation to 5—, and Ly and Ly are specified
t t

functions which define the nature of the splitting. The variable u with no
time-level indicator is meant to imply that a number of time levels may be
associated with each Ag. Combining equations (9a) and (9b) gives the whole-
step scheme, which is equivalent to the split scheme at interior mesh nodes
(i.e., for points in D). The whole-step algorithms assume the general form

un+'| - unh

= - +1 k
v = (A + Ag) E] oyull + oyl :I + AtRL3 (Ayu,Aju) (9¢)

where Kk 1is an integer, and L3 1is an error term resulting from the split

and depends explicitly on L; and Ljp. Equation (9c) may not be valid on or
near the boundary of D (e.g., on one of the lines in {). For locally-one-
dimensional (LOD) splittings, each of the split operators (egs. (9a) and (9b))
involves spatial derivatives in only one direction. Therefore, the general form
of the time-split LOD schemes for equation (1) may be written as

(&)
5,

with the corresponding whole step

My (Aqyu) (10a)

M, (A2u) (10b)

g+l _ yn
Y = (A + A2)E1 - a)ul + aun‘”:, + Atkms (Ayu,Apu) (10c)

The Douglas-Gunn Method

One of the most widely used implicit time-split methods is that due to
Douglas and Gunn (ref. 9). For the scalar equation (1), the spatially split
Douglas-Gunn (DG) scheme is

u° - ul

= Ayu* + A,un (11a)
At ! 2

11



un+'| R o}

= Au* + A-ygnt] | 11b
At 1u 2u (11b)

The asterisk is a symbol of convenience and can denote some intermediate time
level, say n &t < t* £ (n + 1) At. As shown in this section, however, for some
time~split methods, u* or other intermediate levels may not be a consistent
approximation to the solution of equation (1). Note that for the DG scheme each
split step (egs. (11)) is a consistent approximation to equation (1).

From an operational standpoint, equations (11) may be rewritten as

Aju* = Byul (X1,%3) € Dy (12a)

A un*l = ul 4+ At Aju*  (x9,%5) € Dy (12b)
where

Ag = (1 - At Ag) L =1,2 (13)

By = (1 + At Ag) 2 =1,2 (14)

The equivalent whole-step DG algorithm is obtained as follows. Multiplying
equation (12b) by A7 yields

ApAountl = Aqul + At Ay (Aqu*) (15a)

Aqul + At Ay (Boul) (15b)

Note we have commuted /Ay and A; to obtain equation (15a) and used equa-
tion (12a) to obtain equation (15b). If equation (15b) is expanded using the
definitions given by equations (13) and (14), the equivalent DG whole-step
formula in difference form is

un+l _ yn g+l — yn
i = (A + Ay)unt! - At2A4A, — (x],X2) €D (16)

The time-splitting error term for the DG method is formally second order in time
and, in addition, is proportional to an approximation to the time derivative

12



ug. If the problem being solved has a steady-state solution, the time-splitting
error term would be expected to vanish as the steady solution is approached.
However, this will not be true of an unsteady problem. The symbol R is used
to denote the so-called steady-state residual:

R = (A-| + Az)u . ] 17)

The entire residual for this and other schemes is denoted R. For the DG method,
R 1is given by :

. ghtl - yn
RO+ = (A] + A2) un+l - AtZA'] Az ——A————— (18)
t

The DG method is unconditionally stable, as may be verified by a simple
Von Neumann analysis. The damping ratio G is given by

1 + ByBo
G = (19)
(1 +89)0 + By)

where Bg = 2 At h=2(1 - cos 6y).

The DG approach was applied to both TP1 and TP2. The method is implemented
by first implicitly solving equation (12a) (via the Thomas algorithm) along all
interior horizontal grid lines in D (i.e., Dj; see fig. 1). This is followed
by a similar implicit solution of equation (12b) along all vertical lines in D
(i.e., D2). The time splitting thus has the computational effect of approximat-
ing the inversion of the original block tridiagonal matrix (from (A + A2)un+1)
by a sequence of simpler scalar tridiagonal inversions of the unidirectional
Ay operators. The penalty for use of such an artifice is, of course, the time-
splitting error. The computational results are summarized in table I for three
different time steps. The normalized time step T is defined by

Tz At (20)
142
4

where T = 1 corresponds to the stability limit of the unsplit forward-time,
centered-space method of equation (8). Table I gives the maximum and minimum
absolute errors |E|max and IEImin. (the maximum steady-state residuals R
were driven to machine zero, approximately 10-13), which demonstrate the
hz—convergence of the computed solution to the exact solution. In these calcu-
lations the maximum errors occur at the center of the grid, as should be

13

®,

Y

¥



expected since this location is farthest from the boundaries where the solution
has no error.

Locally-One-Dimensional Methods

In this section three locally-one-dimensional methods are discussed:
(1) the LOD forward Euler method, (2) the LOD backward Euler method, and (3) the
LOD predictor-corrector method.

LOD forward Euler scheme.- The LOD forward Euler (LODFE) scheme is a two-
step time-explicit approximation to equation (1). The two steps are

u* —_ un
= Aqun (21a)
At !
un+'| - u*
= Aou* (21b)
At 2

Using equation (14), the computational steps are

u* = Byul (x1,%X2) € Dy

{22a)
u* = f; (X7,%x2) € Y3, £ =1,3
un*l = Bou* (x7,%x2) € Do

(22b)
o+l = gH (X1,%2) € Yg, & = 2,4

* + .
For TP1 and TP2 we take £y = fa ! fq for (x7,x3) € Yg, R =1,...4. 1It is

easily verified that the stability restriction is T £ 2. The equivalent whole-
step method is obtained by substituting equations (22a) into equations (22b)
and expanding the operators:

uhtl - yn
ye = (A] + Az)un + At A1A2un (x1,%X2) €D (23)

Note that the time-splitting error term At AyA,ul, unlike that for the DG
scheme (eq. (16)), is first order in At and depends upon the function itself
u? rather than a form of wu.

14
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The solution, error, and residual maps generated by the LODFE algorithm
applied to TP1 are presented in figure 3 for T =1 and T = 2. Note that the
maximum and minimum errors now depend upon At, as predicted by equation (23),
and that the steady-state residual {(eqg. (17)) is no longer arbitrarily small
as with the DG scheme. The error map in figure 3 introduces another interesting
point - the maximum error and residual now appear along grid lines immediately
adjacent to a boundary, that is, along elements of the set . (See fig. 1.)

LOD backward Euler scheme.- The two-step implicit LOD backward Euler
{(LODBE) method for equation (1) is given by

u* - ul
= Ayu* (24a)
At !
un+1 - u*
= A, untl (24b)
At 2

with comparable computational steps

Aju* = uh (x7,%2) € Dy
(25a)
*
u* = fp (x1,%2) € Yo.r 2 =1,3
1-\2l.ln+.l = u* (X7,%2) € Dy
(25b)
utl = f8+1 (X1,%2) € Yg, & = 2,4
* n+1
For TP1 and TP2 we take fp = f = f3 for (x7,x2) €Yy, & =1,...4 and 3y

is defined in equation (13). Multiplying equations (25b) by A7, substituting
from equations (25a), and expanding, we obtain the equivalent LODBE whole-step
equation

! - yn
X = (A + Ay)ut! - At AqAunt] (X1,%X3) € D (26)

Equation (26) indicates that the LODBE algorithm has a time-splitting error
behavior similar to the LODFE scheme, namely, first-order temporal accuracy
and a function-dependent splitting error. Computational results verify this,

15



as shown by the error, residual, and steady-state solution maps for T =1, 10,
and 1000 presented in figure 4. Again, the steady-state solution is highly
dependent upon T and the maximum error appears on the set §i adjacent to the
boundaries. Note, however, that the implicit nature of the LODBE scheme has
led to a desirable property: the method is unconditionally stable.

LOD predictor-corrector scheme. Before proceeding to a detailed analysis
of the errors that appear in LOD methods, we introduce one additional LOD
algorithm, which Yanenko (ref. 1) calls the predictor-corrector splitting
scheme and which we term LODPC. This approach combines a LODBE predictor with
an explicit, leapfrog corrector in three steps as follows:

= Aqu* (27a)

At/2 = Aguntl/2 (27b)
an+tl - un
e = (A + Apy)untl/2 (27¢c)

The corresponding computational equations and whole~step scheme are

Ayu* = un (x7,x2) € Dy
(28a)
*
u* = fg (x1,%2) € Yg, & =1,3
gzun'ﬂ /2 = u* {x1.x%3) € Dy
(28b)
]
unt1/2 = gfH1/2 (x1,%X2) € Yo, 2 = 2,4
P+l = gD ¢ At (M + /\z)un*'.l /2 (X1,%x2) €D
(28c)
untl/2 = fE+] (X1,%X2) €Y, 2 =1,...4
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?..s
untl _ yn A A o4 ogn At2 A ! - yn ) 29) E
—_— = (N + A ——] - — —_— (x1,%2) €D
At 1 2 D) 4 142 At 1:%X2

. *
For TP1 and TP2 we take fg = fE+1/2 = fE+1 = fp for (x71,%x3) € Yg, &% =1,...4,

and

~ At
Ag = (1 - = A,L> (30)

The development of equation (29) requires the assumption of commutativity of
the operator product AjA; and (A + Ay). Note that the addition of the leap-
frog corrector has had two effects on the whole-step formula as evidenced by
equation (29). First, the method is now second order in time; second, the
splitting error now is proportional to uy rather than u. The LODPC method
is also unconditionally stable. The discussion of LODPC computational results
is presented in the section on complete consistent schemes.

SOURCES OF ERROR IN LOD SCHEMES

For the sake of completeness, the sources of error in the simple forward
and backward Euler LOD schemes are discussed here. A major source of the error
in these methods arises from the well-known fact that the whole-step formulas
(i.e., the scheme with u* eliminated) resulting from equations (21) and (24)
are not consistent with equation (1). Another error arises from a lesser known
source, that is, from errors due to the application of the boundary data. These
two sources of error are termed temporal and spatial inconsistencies, respec-
tively, in this report.

The spatial inconsistency for the backward Euler scheme (egs. (24)) is
discussed in detail here following Yanenko (ref. 1). Examination of the struc-
ture of this scheme reveals that calculations on the first sweep are influenced
by boundary data applied along Y7 and Y3 but are in no way influenced by
boundary data applied along Y5 and Y4. Similarly, on the second sweep the
calculations are influenced by the boundary data applied along Y3 and Y4 and
not influenced by the boundary data applied along Yy and Y3. This fact is
graphically demonstrated in figure 5. As shown, on a given sweep the effect of
the spatial operator contained within the equation for the sweep renders the
solution independent of data on any grid line except the one being swept. From
equations (24), one also notes that as At * «, the coupling between the two
sweeps vanishes. One is thus left with the solution of two independent series
of boundary-value problems on the two sweeps. This fact is further reflected
in the damping of the scheme given by
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where G 1is the ratio of the amplitudes of the Fourier modes between successive
time steps. From equation (31),

lim G = 0 (32)

At >0

which indicates that one approaches a direct solution to some (incorrect) steady
problem as the time step increases. This behavior is in contrast to that of

the Douglas-Gunn scheme, in which the entire spatial operator appears in each
sweep equation. (See egs. (11).) Thus, calculations on each sweep are influ-
enced by data applied on all four boundaries. For the Douglas-Gunn method,
G>1 as At *> o,

The incompatibility of the two sweep equations (25) with the boundary data
is illustrated by the fact that if equations (25a) is applied along the boundary
segment Yo, one has

* *
fq - fg - At A1f2 = g {X1,%2) € Y2 (33a)

*
Now, if f3 1is a function of time and we try to identify £f; with some inter-

n+1/2
mediate value of £, say £ » then equation (33a) becomes
57172 1 8 - A 0 £57/2 - g, (X1 ,%2) € Yo (33b)

Note that, in general, g; does not vanish. For steady boundary data, gp is

-At A1f2 = g9 (%71 r%x2) €Yy {(33c)

which again does not vanish, in general. Also note that

gy = 0 (x9,%2) €D uUu Yy UY3UYY (33d)
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Similar relations along the other boundary segments may be written:

* n *
£4 - £4 - At Mfy = gy (x1,%3) € Y4
g4 = 0 (x7,%X2) €Dy Y1 UY2U Y3
+1 * +1
£77 - £1 - At Af]T = g (x1,%2) € Y
g =0 (x7,%x32) €Dy Y2UY3uU Y4
+1 * +1
fg - f3 ~ At Azfg = g3 (x1,%x2) € Y3
g3 = 0 (X1¢%2) €Dy YT UY2U Y4

With these definitions, equations (25) are now rewritten as
Aju* = ul + (g3 + gy) (x1,%2) € Dy
Azun+1 = u* + (g7 + g3) (x7,%x3) € 52
If u* is eliminated from equations (37), the whole-step scheme becomes
A-|A2un+1 = u + (g + g4) + Ay (g7 + g3) (x9,x32) EDUT
or, upon expanding,

g+l - yn
v = (A7 + Ap)untl — At AjApu?]

+ At~ [(gz + gq) + Ay(g7 + g3):| (x7,%x2) €D U T

(34)

(35)

(36)

(37)

(38)

where MAjAoutt! = 0 for (x7,x3) € I'. Thus, the steady-state residual of the

scheme given by equations (37) is
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R= (A} +Aypu - At AAju
+ At [(gz + ggq) + Ay {gy + g3):| (x7,x3) €DV T (39)
As noted in equations (33) to (36), the functions g are nonzero only on the

boundaries. However, as illustrated in figure 6, if gy # 0 on Yjp, then
Ajgy # 0 on w7 and similarly on w3. In fact,

ay
- — 9 (X1,x2) € Wy
h2
Aygy = < (40a)
¢ .
0 Elsewhere
.
At
- — g3 (x7,x2) € W3
hl
Ajg3 = (40b)
0 Elsewhere

Thus, we would expect that the incompatibility of the split sweep operators with
boundary data applied in the sweep direction contributes an error term to the
steady-state residual of the whole-step scheme only on £ (eq. (39)). This
incompatibility contributes an error term to the residual R only on &

because of the unique form of the functions g,; however, the error in the solu-
tion u caused by this term is propagated over the entire grid.

The errors present in the solutions in figure 4 are a result of the addi-
tional terms identified in the steady-state residual formula (eq. (39)); i.e.,

R = -At MAju + At~ 1Ay (g + g3) (x7,x2) €D (41)

as demonstrated in the next section. Note also from figure 4 that the maximum
error occurs on §l. This arises from the fact that the term At’1A1(g1 + g3)
appearing in equation (41) is nonzero only on .

Errors of the type discussed here are present in all time-split or LOD-type
schemes. Similar boundary-error analyses are carried out for the LOD forward
Euler, LOD Lax-Wendroff, and a hybrid LOD scheme in appendix A. Procedures
designed to eliminate these errors from time-split schemes are introduced in
the next section of this paper.
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COMPLETE CONSISTENT LOD SCHEMES

REMOVAL OF TEMPORAL INCONSISTENCY

A desirable property of difference schemes for the solution of equation (1)
is that they be accurate for the unsteady case and recover any existing steady-
state solution independently of At. Such a scheme is designated "complete
consistent” in reference 1. We now attempt to render the inconsistent LOD
backward Euler method complete consistent through the removal of both the tem-
poral and spatial inconsistencies. Removal of the temporal inconsistency is
discussed first, since it is the most easily achieved. A similar modification
of LODFE appears in appendix A.

The LODBE method can be made temporally consistent by the explicit addi-
tion of the term At2A1A2un to the first step of the time-split operator.
(At2A1A2u“ is defined to be zero for (x7,x3) € I'.) Thus, the computational
algorithm expressed by equations (37) becomes

Aju* = ul' + At2A1A2un + (g3 + g94) (X7,%3) € _51 (42a)

where the boundary-condition residual functions have been retained for compati-
bility with analyses which follow later. 1In whole steps the scheme (egs. (42))
is

un+'l - yn +1 5 un+l - un>
= (A + As)ul - At Ay| ———
At (h + f2) U2\ e

+ At [A-| (g1 + g3) + (gp + g4)] (x7,x3) €D U r (43)

Note the term that brings about the temporal inconsistency has been removed (for
problems having a steady-state solution) by converting it to a uy form. 1If

we restrict our attention to D, gy and g4 can be dropped from equation (43),
since they are zero by definition on D, so that we obtain

ahtl - yn 1 ) (un+1 - u“>
= (A + Ay)ulF! - At Ayl —m——
e (A 2) 142 At

+ At-1 E\'l (g7 + g3):| (x7,%2) € D (44)
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Recall that, in view of the analysis presented in the previous section, the term
Ay (g7 + g3) cannot be eliminated, as it is nonzero at certain locations in D.
(See egs. (40).) The method specified by equations (42) is termed the consistent
LOD backward Euler method (LODBEC). The technique used here to remove the tem-
poral inconsistency was suggested to the authors by David Gottlieb, of Tel Aviv

University.

Another LOD scheme which is temporally consistent in its basic form - the
LODPC method - was introduced earlier. If boundary-error problems are antici-
pated, the computational scheme given in equations (28) may be rewritten as

Aju* = ul + (Jo + dg) (x1,%9) € Dy (45a)
zzunﬂ /2 = u* + (g7 + 93) (X7,x3) € Dy (45b)
M+l = uh 4+ At (Ay + Ay)untl/2 (X7,X2) €D (45¢c)

No new boundary residual terms have been introduced for the explicit corrector
(eq. (45c)), since this step is consistent with equation (1). Formation of the
whole-step scheme requires care, since the functions g are discontinuous.
Formulas derived for the contribution to the residual on D from the terms

g in which operator commutativity was assumed did not correctly predict the
computed results. For this reason, no operator commutativity was assumed on

g in the following derivation. Therefore, formation of the scheme proceeds
as follows. Multiplying equation (45b) by K1 and substituting equation (45a)
for Aju* yields

BgAunt1/2 = ul + (Fy + §y) + By (§) + §3)

This equation may be solved by successively inverting the 31 and 32
Operators:

~=1=-1 ==l = 5 e~
un*l/2 = K5 A7 uP + By & Egz +tg4) * RAp(gy + 93{]

Substituting this into equation (45c) for unt1/2  ang multiplying the resulting
equation by AjA; produces

g-|§2un+1 = i'lgzun + At K]gz (Ay + Ap) (i]gz)_.' ul

~ amla=1] ~ ~ ~ ~
+ At ARy (A + M)Ay A [(gz + gq) + Ay(gy + 93£I
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Cammuting the operators 3132 and (Ay + Ay) that are operating only on ul
and simplifying the resulting equation gives the whole-step form:

antl _ yn untl 4 yn Ae2 gntl - yn
— = (A} + Ay) - AMAY ———
At 2 4 At

~ o~ ~e~=1 o - ~ ~
+ MAg (A + Ax)Ar A l:(gz + gg) + A (g + 93)] (X1,%x2) € D  (46)

Figures 7 and 8 present the solutions obtained with LODBEC and LODPC,
respectively. Note the minimum residual of machine zero and the large maximum
residual on §. It is interesting that the residual is machine zero on grid
points immediately adjacent to § for the LODBEC scheme for all time steps.
(This is also true of the consistent LODFE scheme.) The boundary-error contri-
bution to the residual moves in one extra row of grid points for the LODPC
scheme, as shown in figqure 8. This is apparently the effect of the complicated
operator on g in the last term of equation (46).

It is also interesting to compare the maximum residual from the computation
with the predictions of equations (35) and (36) for the LODBEC scheme. For this
scheme the steady-state residual is, from equation (44),

- Ay (g7 + g93)
R = (A] + A2)u + _At— (47)

where the term proportional to u; has been dropped, since it vanishes as
steady state is approached. Substitution of equations (3) into equations (35)
and (36) and substitution of this result into equation (47) gives, for the
residual,

~ At ’
R = (A + Aj)u - = Ay, (x7,%3) € Wy (48)
h
- At
R=R+ = T2 sin Txy (x7,%2) € Wy : (49)
h

Thus, if R = 0, i.e., if the scheme has converged to steady state, then

At
(Ay + Aj)u = - — T2 sin Tx, (50)

h2

o
]
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and, hence

At

|R|pax = — 2 (51)

The computed results are compared with results predicted by equation (51) in
table II for various values of T for a grid with h = 1/8. The computed and
predicted results agree to within the spatial truncation error. The third
column in table II gives the values predicted by equation (51) with Ajf,
evaluated discretely. The perfect agreement of the predicted and computed
results confirms the validity of equations (33) to (36).

REMOVAL OF SPATIAL INCONSISTENCY

The first method for the removal of the spatial inconsistency investigated
in the present work is the method of undetermined functions (MUD) as developed
in reference 1. The method of undetermined functions can be cast in two forms:
one in which the boundary data are adjusted (MUDB) and another in which a cor-
rection function is applied over the entire domain D (MUDF). Understanding
of MUD is essential to understanding the development of the general consistent

scheme given later.

Boundary-Point Method (MUDB)

The basis for the MUDB LODBEC scheme lies in the equations defining dqr
i.e., equations (33) to (36), and the observation that since each of the steps
in the method given by equations (42) is not consistent with equation (1),
then u* 1is not necessarily an approximation to u at any time level. We are
thus free to view f* as unknown boundary data which can be adjusted to yield
a consistent whole-step scheme. 1In particular, if we set g7 = g3 = 0, then

* *
equations (35) and (36) an be solved for £7; and £3:

* + +

£1 = B o Ae AR = et (X7,%X2) € Y (52a)
*
£3 = 577 - At ARt = A eRY (x1,%2) € Y3 (52b)

These modified boundary data are now applied on the first sweep for the calcu-
lation of u*. Similar formulas for the calculation of f* for the consistent

LOD forward Euler scheme (LODFEC) are presented in appendix A.
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"Pield Correction Method (MUDF)

A more general method of undetermined functions (MUDF) may be used to cor-
rect for the boundary error in a way that allows use of the given boundary data
in the calculations. For this method the LODBEC equations (eqs. (42)) are
rewritten as ' :

Aju* = ul + At2AyA,un (x7,X3) € Dy (53a)
Apult! = u* + g (x7,%3) € Dy (53b)

The unknown function g is introduced in equation (53b) for the purpose of
absorbing the error in D due to the application of the given boundary data.
The whole-step scheme becomes

8 S IS (untl - yn
At = (A] + ./\2)un+.I - At2A1A2 T—) + A1g (x1,x2) €D (54)

Obvicusly in equation (54) we want Ajg = 0 for (Xy,X3) € D. We set

Q
1]

9] (X1,%2) €N
{55)

Q
1]

g3 (x7,X2) € Y3

The desired correction function g 1is obtained along each x5 = Constant grid
line {(i.e., each Hy in Dj) by solving

Ag =0 (X7 ,X2) € Dy (56)

along each such line subject to the boundary conditions given by equations (55).

Results of computations using the LODBEC scheme with the spatial inconsis-
tency corrected by MUDB and MUDF are presented in figure 9. (Results of both
methods are identical.) Note on the figure 9 residual map the random distribu-
tion of machine zero residual over the entire grid and on the error map the
maximum error at the middle of the grid. The results of these computations
agree exactly with the results in table I. This agreement verifies that the
scheme reproduces the exact solution to the difference equations generated with
the Douglas-Gunn scheme for all three values of T. We thus term this scheme,
i.e., LODBEC with MUD, complete consistent.
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A SELF-CANCELING BOUNDARY-ERROR SCHEME

Attempts to use a rigorous development of MUD for the LODPC scheme in the
present investigation met with failure. The authors were able to develop a
successful formulation of MUDF only by trial and error. It is thought that the
reason for the failure to rigorously derive the proper field correction func-
tion was the requirement to assume operator commutativity in order to obtain
analytic formulas. Rather than presenting a detailed discussion of this situa-
tion, we take here a more fruitful approach. Elimination of u* between
equations (45a) and (45b) gives

~ o~ ~ ~ ~ ~N ~N
ul = A;A,unt1/2 - <g’2‘ + 92> - A (91 + g3> (57)
Similarly,
> o> ~n+1 ~n+1 ~ [ ~n+l ~n+1
un+l = Ayapnn*3/2 - (92 + 94 ) - A1(g1 + 33 ) (58)

Substitution of equations (57) and (58) into equation (45¢c) gives

un+3/2 _ yn+1/2 (un+3/2 4 yn+1/2) A2 (un+3/2 - un+1/2)
= (A + Ay) - — N Az
At 2 4 At
~n+1 ~n ~n+1 ~n ~nh+1 ~n ~n+1 ~n
g2 -~ 92 94 - 94 i[9 -9 9; -~ 95
+ + + A +
At At At A

(59)

Equation (59) indicates that the LODPC scheme is complete consistent for the
{n+1/2) level data. 1In addition, note that no assumptions of operator
commutativity were necessary to obtain equation (59). Computation with this
method on the test problem produces results identical with results from the
Douglas-Gunn method and from LODBEC with MUD. Note, however, that no modifica-
tion of the boundary data had to be made to achieve these results. Also note
that the n-level data converge to a different steady state than the (n+1/2)
level Adata. (See £ig. 8 for the n-level solution to the test problem.) Thus
the n-level data may be viewed as data that have been preconditioned by
including the negative of the values of both the temporal and spatial inconsis-
tency errors. Thus, the LODPC scheme, with the (n+l/2) level data monitored

as the solution, is a self-correcting LOD method which is complete consistent.
To the authors' knowledge this result has not been observed before.
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A GENERAL COMPLETE CONSISTENT LOD SCHEME
The field method of undetermined functions (MUDF) may be used to develop
a class of complete consistent LOD schemes. We will develop the algorithm
first in two dimensions, demonstrate the accuracy with computational results,

and then extend the method to an arbitrary number of split steps.

We begin the development by writing the form of the desired whole-step
formula

@n+1 - u@

untl = yn 4 At (A + Ao) auntl 4+ (1 - a)ué] - a2 At3A]A2 A (60)
t
where 0 =2 a £ 1. The LOD scheme is then
2 ~n+1 An+1 -
Aqu* = QR + <92 + g4 ) (%7 ,%2) € Dy (61a)
~ ~n+ ~n+ =
B,unt! = ux 4 (g? '+ 53 1) (x7,%2) € D (61b)
where
Ag = (1 - a At Ag) 2 =1,2 (62)

and ag with £ =1,...4 are error terms due to the application of boundary
data and are analogous to the gy of LODBE. Here Q% is introduced to absorb
the temporal and spatial error. Elimination of u* from equations (61) gives

A ~n+
ult! = N 4+ o At (A + Az)un"'1 - a2 At2/\.'|1\.2un"'.I + (gg+1 + 92 1)

~ [ AN+ /\+.|
+ A1<g? Ty gg > (x,x) €EDUT (63)

Now equation (63) is subtracted from equation (60) and the result is solved
for Q<:

on = a + (1 - ) At(A] + Az)un + a2 At2A1A2un
- (6’2‘” + 62”) - & <§?“ + §'3‘+1> (x7,%3) € DU T (64)
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By making use of equation (63) rewritten for ull,- this result can be stated as

! /\1 A A+1_I\
on = oi1 + At(My + Ay)ul - (g%* - 92) - <92 - 94)

2 ~ +-| A A +.| ~
- A,Rg? - g?) + <gg‘ - ggﬂ (x1,%3) €D UT (65)

For steady boundary data, equation (65) reduces to
on = on=1 4+ At (A + Apy)ul (x7,%3) €D (66)

The scheme developed above is termed the LODQ scheme. For steady boundary
data, the heretofore unspecified § functions in equation (65) may be dropped
without introducing any error. For unsteady boundary data, however, neglect
of the g function terms appearing in equation (65) produces an O(At) trun-
cation error, as is now demonstrated. The terms due to §2 and g4 need not
be considered, since they will not affect the solution on the interior of the
domain. A derivation completely analogous to that yielding equations (40)
gives for g7 and g3

~ [ An+l ~ =0 At/ n4 ~N

Ay (91 - 9?) i (91 - 91) (x1,x2) € Wy (67a)
h

~ An+-' ~N -a At /\n+1 ~N

A <93 - 93) = 2 <93 - g3> (X7,%3) € W3 (67b)

Also, in the same way equations (35) and (36) were developed, expressions
for §1 and g3 are obtained:

~ -+ *
g?” = f? 1 - £ -a At Azf?-ﬂ (X7 ,x3) €T (68a)
An+1 n+1 * n+1
857" = £3 - f3 - a At Ayf3 (X7 ,%9) € Y3 (68b)
. * n+1 * n+1 .

For convenience, we now take £y = fi and f3 = f3 . Then equations (68)

become
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~n+1 +1

31 = -a At AT (X7,%2) € Y (69a)
~n+1 +1 '

83 = -a At Ayf] (X1,%2) € Y3 (69b)

Substitution of equations (69) into equations (67) then gives

~ A A a At +

A1<9?+1 - 91) = — a At A2<f? v- f?) (x7,%X2) €T (70a)
h

N AT ~ o At +

A1<93+1 - g%) = ¢ At A2<f§ - fg) (x1,x2) € Y3 (70b)
h

The reconstructed whole-step formula thus becomes, with the use of equation (66)

for Q,

antl - yn ] 5 ) n+l _ un)

= (Ay + Ay)jount! + (0 - a)uﬁ] - af At4MA
Ty 1 2) 142 it
n+} n n+1 n
o[t At A <f1 - f1> <f3 - f3>
+ a4 — t —_— | —— (Xx9,%X2) €D (71)
02 2\ At At 12

Now groceeding to the limit of vanishing mesh according to the law
At/h“ = Constant shows that the scheme is consistent with equation (1)
to O(At).

The complete consistent LODQ scheme may be summarized as

Aju* = Qn (X7,%2) € Dy (72a)
Bountl = u= (x7,x2) € D2 (72b)
QN+l = on 4+ At(Ay + Ap)unt] (X7,%2) € D (72c)
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where Qo may be taken as ul. It should be borne in mind that for problems
with unsteady boundary data, the scheme is first order in time regardless of
the value of 0. 1In order to achieve the possibility of second-order accuracy
in time, i.e., to recover the whole-step formula given by equation (60) rather
than that given by equation (71), one must evaluate the g-functions. Further,
it should be noted that operator commutativity does not have to be used to
derive the equation for Q nor to develop the whole-step formula.

The scheme given in equations (72) was run on TP2 with the results sum-
marized in figure 10. The numerical solutions agreed to machine accuracy for

all values of & and At with the Douglas—-Gunn scheme results.

The scheme can be readily extended to the case of m split steps as

R]u(1) Qn

ﬁzu(2) = ull)

(73)

gmun+1 = y(m-1)

ontl = on & At(Ag + Ay + . . .+ Apunt )

The scheme can be verified to be complete consistent by elimination of all
intermediate values of u(Mm and Q. (The whole-step scheme for the 3-D case
is given in appendix A.) The scheme is also first order in time for unsteady
data regardless of the value of «. Again, operator commutativity does not
have to be assumed in order to derive these results.

A comment should be made about the stability of the LODQ scheme. As shown
in appendix B, the method is unconditionally stable in two dimensions for both
linear parabolic (heat conduction) and hyperbolic (advection) model equations
for second-order central differences. In three dimensions, however, the method
retains unconditional stability for the parabolic case only. 1In the three-
dimensional hyperbolic case, the method is unconditionally unstable for second-
order central differences. This unfortunate result follows from the desired
whole-step formula, which contains the destabilizing term o3 At364u/5x16x26X35t.
One can eliminate this term from the whole-step formula, but to do so would
generate a form of Q which would destroy the tridiagonal structure of one of
the sweeps. This instability thus appears to be inherent in schemes for three
dimensions which involve three spatially split implicit steps and two time
levels, including the two-level Douglas-Gunn type schemes.
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CONCLUDING REMARKS

It is obvious from the results presented in this paper that one must be
very careful when applying locally-one-dimensional (LOD) type splitting schemes.
Two types of errors present in such schemes have been explored in detail: the
temporal inconsistency due to splitting and the spatial inconsistency due to
application of Dirichlet boundary data. The temporal error has been shown to
be of the order of the temporal truncation error of the scheme and, hence, does
not have a large effect on the solution for explicit methods, in which one is
forced to take small time steps from stability considerations. For implicit
methods, however, the errors introduced by this inconsistency can be substantial
when large time steps are taken. Care must therefore be taken to remove this
inconsistency .in implicit schemes.

The spatial inconsistency due to the application of Dirichlet data is some-
what more troubling. As has been shown, this inconsistency produces 0(1)
truncation error terms on grid lines adjacent to the boundaries and, hence, can
have a substantial effect on solution accuracy even at small time steps At.
For the test problem examined in the present work, the errors in the solution
caused by this inconsistency proved to be acceptable (i.e., 0(h?2), where h is
spatial step size) at time steps of the order of the explicit stability limit,
but such may not be the case for other problems.

As a result of these observations a complete consistent LOD scheme has been
developed. For steady Dirichlet boundary data, the method eliminates both iden-
tified inconsistencies exactly; but, for unsteady Dirichlet data, the spatial
inconsistency is made O(At) rather than O(1). This complete consistent
scheme was developed in such a way as to produce a whole~step formula identical
with that which is associated with the spatially split Douglas-Gunn method.

As a consequence of this development the complete consistent locally-one-
dimensional scheme (LODQ) can be considered an alternate interpretation of a
general class of complete consistent ADI schemes which also includes the spa-
tially split Douglas-Gunn method. All the strengths and weaknesses of this
class of schemes are thus shared by the LODQ scheme.

One of the principal shortcomings of the whole-step formula associated
with the LODQ scheme is its unconditional instability for the 3-D linear
advection equation. With the introduction of the method for development of the
LODQ scheme, one has substantial freedom, however, in the choice of resulting
whole-step formula. It may be possible to devise a whole-step formula which
can be spatially split, complete consistent, and second order in space and still
be stable for the three-dimensional advection equation (e.g., by introduction
of another time level). These possibilities were not examined in the current
investigation.

One further comment should be made regarding the errors associated with
LOD schemes. The time-split MacCormack-Baldwin method for the linear problem
examined in this work reduces to the LOD Lax-~-Wendroff scheme given in appendix A.
As shown in equations (A6) through (A7) this method contains the spatial incon-
sistency and, as demonstrated in equation (AB), also contains a temporal incon-
sistency. Computational experience of the authors verified these formulas.
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The inclusion of the cross-derivative terms in each split step of the MacCormack-
Baldwin method for the full Navier-Stokes equations may circumvent the spatial
inconsistency encountered in the present work. On the basis of the present
results, however, one would anticipate the spatial inconsistency to appear in

the implementation of the optimal splitting developed in NASA CR-159386.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

February 13, 1981
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APPENDIX A

OTHER LOD SCHEMES

CONSISTENT LOD FORWARD EULER SCHEME-

In order to render the LOD forward Euler method complete consistent, a
correction term similar to that in equation (42a) is introduced. Only the
boundary method of undetermined functions (MUDB) for rendering the scheme -
complete consistent will be given. The algorithm is

u* = Byul + <d§1 + dz) (x7,%x2) €EDUT (A1)
an+tl = Bou* - At2A1A2un + <d? + d%) (xy,%3) €EDVUT (A2)

where AqjAoum = 0 for (x7,x3) €T, and

aF = 5~ £ - A Ayey (x1,%2) € Yq (A3a)
ad = £5 - £5 - At A£] (X),%3) € Yy (A3b)
a3 = £ - £3 - At Ayrj (X1,%X2) € Y3 (A3c)
a} = £3 - £ - At Aj£3 (X1,%2) € Yq (A3d)

The whole~step formula is

untl - yn

e = (Ay + Ay)u® + At'1B2<d2 + d2> (X'I'XZ_) € D (Ad)

In order to render the scheme complete consistent, we set _dg = d2 =0 by

* *
adjusting f, and f4 according to the formulas
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£2 + Ot M£3 (x7,%2) € Y2

£3 + Ot M£} (x1,%2) € Y4

(A5a)

(A5b)

Computational experiments conducted by the authors demonstrated the complete
consistency of the above outlined method.

LOD LAX-WENDROFF SCHEME

An LOD scheme based on the classic one-step Lax-Wendroff scheme can be

written as

where

34

u*

un+'|

]
Byul + p AtZ2AAjun + <eg + e2>

]
= Bou* + 5 At2A A Hu* + (e? + e?)

* * 1 *
f!’|1+1 - £ - At A2f'| - 5 AtzAzAzf"

AtzA] A] fg

*
£y - £3 - At M£5 -

* *
£51 _ £3 - At Ayf3

1 *
5 At2A2A2f3

*
£4 - £4 - Ot My£g - - Ae2hyAygg

NS

(x1,%x2)

(X7 rX2)

(x7,x2)

(x7.,%2)

(X" IXZ)

(x7,x%3)

S

Y1

Y2

Y3

Y4

(A6a)

(A6b)

(A7a)

(A7b)

(A7¢c)

(A74d)
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The whole-step scheme is

untl - yn

1
= (M + Ao)ul + — At(Ay + A,)2yn
At (M 2) 5 (N 2)

2
1 o
+ 5 At2A1 Az (A1 + Az)un + — A2A2A1A1 un
At

]
+ At (Bz + 5 At2A2A2> <er21 + e2> (x7,%x2) €D (A8)

This scheme thus has both splitting and boundary errors. Computational experi-
ence with this scheme reveals a steady-state solution which depends upon At2,
even with the spatial inconsistency removed with MUD.
LOD HYBRID SCHEME
Another complete consistent LOD scheme in two dimensions is the hybrid

scheme

u* = Byul + (a% + d2> (x7,%3) € Dy (A9)

Ajulttl = y* 4+ <g? + g§> (%7 /%) € Dy (A10)
The whole-step scheme is

un+l _ yn (un+1 - un)
Y = (A] + Az)un + At A2 -—At—-— (x7,x3) €D (A11)

The scheme is thus observed to have no spatial or temporal inconsistency on the
interior of the domain. Computational results confirmed this prediction. The
scheme cannot be extended to three dimensions as a complete consistent scheme
without adding terms and using MUD.
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APPENDIX A
3-D LODQ SCHEME

In three dimensions, the LODQ scheme has a split form very similar to the
2-D case. The split steps are

a1u(1) = gn (%7 rx2,%x3) € Dy (Al 2a)
Ayu(2) = y(1) (X7 r%2,%3) € Dy (A1 2b)
2\3un+1 = ul(2) (x7 rx2,%x3) € D3 (Al 2¢)
on*l = on + At(Ay + Ay + Az)yunt] (X71,%2,%X3) € D (A124)

where 33 and D3 are defined analogously to ﬂg and Dy, with £ =1,2. The
whole~-step scheme obtained by eliminating ull), u(z), and Q 1is, for
steady boundary data,

uhtl _ yn
A = (A} + Ay + Ay) ault! + (1 - a)ulﬂ
t
untl - g
- a2 Atz(A-!Az + A]A3 + A2A3) At r9
untl - yn
+ a3 At3A A N0, (_—-——> (A13)

At
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APPENDIX B

STABILITY OF LODQ SCHEME

TWO DIMENSIONS

In this section, the Von Neumann damping ratios for the LODQ scheme are
presented for the two-dimensional model equations

du 92u 92y

el =)
3x1 sz

du 3u du

_— = o — o — (B2)

ot aX] 3X2

For the two-dimensional parabolic equation (eq. (B1)), the damping ratio is

1 + (@ - 1)(By + Bp) + a2ByB,
G = - (B3)
1 + a(By + By) + a2BB,

For the two-dimensional hyperbolic equation (eq. (B2)), the damping ratio is,
for central-space and backward Euler time differences,

(1 - a?mny) - (@ - 1)i(ny + n3)
G = (B4)
(1 - a2n1n2) - ai(my + nj3)

where i =V-1 and ng = At h~! sin Bp. It is easily verified that in both

1
these formulas, |G| £ 1 for all At provided that 3 fa 1.

THREE DIMENSIONS

In this section, thz Von Neumann damping ratios for the LODQ scheme are
presented for the three-dimensional model eguations
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du 92y 92y 32y
= — t — 4 — (B5)

3t 2 2 2
8x1 3x2 3x3

ou ou ou du
= - — - — - — (B6)

ot 3x1 8x2 aX3
For the three-dimensional parabolic equation (eq. (B5)), the damping ratio is

T + (0 - 1)(61 + 82 + 33) + G2(8182 + 8183 + 8283) + 33818283
- (B7)

G = - -
1T + a(By + By + B3) +aZ(B1By + B1B3 + BoB3) + a3B1B,83

Again, from this formula, |G| £ 1 for all At for P £ a s 1. The damping

ratio for the three-dimensional hyperbolic equation (eq. (B6)) is

E - aZ(mny + mn3 + n2n3{| + iBa - 1)(M + Ny +n3) - a3n1n2n§__|

[ - o2mny + mng + n2n3Z| + il:a(m + Ny +M3) - a3n1n2n3]
From equation (B8) we see that the scheme is stable provided
2 2
l:(a -~ 1)(Mm + Ny + N3) - a3n1n2n3:| < El(m + Ny + N3) - a3n1n2né] (B9)

This inequality can never be satisfied for At > 0 for any @ in the range
02 o f1. Thus, the scheme is unconditionally unstable for equation (B6).
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TABLE I.~ ERRORS IN SOLUTION TO TP1 AND TP2

USING THE DOUGLAS-GUNN METHOD

[t =1, 10, 100@]

h | &l max | B min |E| max 5 h2
1/4 2.8239880 x 1072 | 1.6879493 x 1072 0.9037
1/8 7.2936317 x 10°3 | 1.6010933 x 10~3 .9336
1,16 1.8392306 x 10~3 1.21712913 x 10-3 9417

TABLE II.- CALCULATED AND PREDICTED MAXIMUM RESIDUALS FOR

TP2 USING LODBEC METHOD

[h = 1/8]

| R| max
' Calculated by Predicted by eq. (51) Predicted by eq. (51)
LODBEC (analytic) (discrete)
1 2.4358 2.4674 2.4358
10 243.58 246,74 243.58
1000 2435.8 2467.4 2435.8
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Figure 1.- Continuum and discrete regions.
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Discrete sets D] and D]
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Discrete sets D

Figure 1.- Concluded.
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Boundary conditions Analytic solution

Test problem 1 (TP1)

Boundary conditions Analytic solution

Test problem 2 (TP2)

Figure 2.- Boundary conditions and analytic solutions for the
two test problems considered.
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Numerical solution Residual

Figure 3.- Numerical results - LOD forward Euler scheme applied to TPI.
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maXx min
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Numerical solution Error Residual

(b) T =10, h=0.1.

Figure 4.- Numerical results - LOD backward Euler scheme applied to TP2.
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Numerical solution

Emin = 1.12 x 10

Error

{(c) T =1000, h =20.1.

Figure 4.~ Concluded.

1

R

ma

=9.57 x 10 R
X

Residual

mi

o 1.09 x 10~

]



iy

® Boundary points
O  Unknowns (treated implicity)
® Other field points (treated explicitly)

Single-point

[

difference molecule

Single-point !

(a) Douglas-Gunn method: (b) LOD methods: xy 1line
X1 line algorithm. algorithm.

Figure 5.~ Comparison of field points used in the line
algorithms for the Douglas-Gunn and LOD methods.
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Figure 6.~ Propagation of the boundary residual onto the set Q.
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(b) T=101 h = 0.1.

Figure 7.- Numerical results - consistent LOD backward Euler scheme applied to TP2.
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(c) T =1000, h = 0.1.

Figure 7.~ Concluded.
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(b) T =10, h = 0.1.

Figure 8.~ Numerical results - LOD predictor-corrector scheme applied to TP2.
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Figure 9.- Numerical results - consistent LOD backward Euler scheme
with MUDF applied to TP2. T = 10; h = 0.1.
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Figure 10.- Solution error of the LODQ scheme applied to TP2.
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